Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
1.
Nat Commun ; 13(1): 680, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115539

RESUMO

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.


Assuntos
Autofagia/fisiologia , Espinhas Dendríticas/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Potenciais Sinápticos/fisiologia , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
PLoS Comput Biol ; 18(2): e1008836, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139071

RESUMO

Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous irregular activity but, in standard balanced E-I models, this requires that an extremely strong feedforward bias current be included along with the recurrent excitation and inhibition. The absence of experimental evidence for such large bias currents inspired us to examine an alternative regime that exhibits asynchronous activity without requiring unrealistically large feedforward input. In these networks, irregular spontaneous activity is supported by a continually changing sparse set of neurons. To support this activity, synaptic strengths must be drawn from high-variance distributions. Unlike standard balanced networks, these sparse balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian input statistics. Interestingly, the speed, not the size, of synaptic fluctuations dictates the degree of sparsity in the model. In addition to simulations, we provide a mean-field analysis to illustrate the properties of these networks.


Assuntos
Córtex Cerebral , Modelos Neurológicos , Rede Nervosa , Neurônios , Potenciais Sinápticos/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Biologia Computacional , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101920

RESUMO

During prolonged trains of presynaptic action potentials (APs), synaptic release reaches a stable level that reflects the speed of replenishment of the readily releasable pool (RRP). Determining the size and filling dynamics of vesicular pools upstream of the RRP has been hampered by a lack of precision of synaptic output measurements during trains. Using the recent technique of tracking vesicular release in single active zone synapses, we now developed a method that allows the sizes of the RRP and upstream pools to be followed in time. We find that the RRP is fed by a small-sized pool containing approximately one to four vesicles per docking site at rest. This upstream pool is significantly depleted by short AP trains, and reaches a steady, depleted state for trains of >10 APs. We conclude that a small, highly dynamic vesicular pool upstream of the RRP potently controls synaptic strength during sustained stimulation.


Assuntos
Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Potenciais de Ação/fisiologia , Animais , Masculino , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
4.
Life Sci ; 295: 120419, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183555

RESUMO

AIMS: Sustained visceral hypersensitivity is a hallmark of irritable bowel syndrome (IBS) could be partially explained by enteric neural remodeling. Particularly, synaptic plasticity in the enteric nervous system, a form of enteric "memory", has been speculated as a participant in the pain maintenance in IBS. This study aimed to elucidate the role of ephrinB2/ephB2 in enteric synaptic plasticity and visceral pain in IBS. MATERIALS AND METHODS: EphrinB2/ephB2 expression and synaptic plasticity were assessed in colonic tissues from IBS patients, and rats induced by Trichinella spiralis infection and those treated with ephB2-Fc (an ephB2 receptor blocker) or ifenprodil (a selective NR2B antagonist). Furthermore, abdominal withdrawal reflex scores to colorectal distention and mesenteric afferent firing were assessed. EphrinB2-Fc(an ephB2 receptor activator) induced enteric synaptic plasticity was further evaluated in longitudinal muscle-myenteric plexus(LMMP) cultures and primary cultured myenteric neurons. KEY FINDINGS: EphrinB2/ephB2 was specifically expressed in colonic nerves and upregulated in IBS patients and rats, which was correlated with pain severity. The functional synaptic plasticity, visceral sensitivity to colorectal distention and colonic mesenteric afferent activity to mechanical and chemical stimulus were enhanced in IBS rats, and were blocked by ephB2-Fc or ifenprodil treatment. EphrinB2-Fc promoted the phosphorylation of NR2B in IBS rats and LMMP cultures, and could mediate sustained neural activation via increased [Ca2+]i and raised expression of synaptic plasticity-related early immediate genes, including c-fos and arc. SIGNIFICANCE: EphrinB2/ephB2 facilitated NR2B-mediated synaptic potentiation in the enteric nervous system that may be a novel explanation and potential therapeutic target for sustained pain hypersensitivity in IBS.


Assuntos
Efrina-B2/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Receptor EphB2/metabolismo , Adulto , Animais , China , Colo/metabolismo , Sistema Nervoso Entérico/fisiologia , Efrina-B2/fisiologia , Feminino , Humanos , Hiperalgesia/metabolismo , Síndrome do Intestino Irritável/metabolismo , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptor EphB2/fisiologia , Potenciais Sinápticos/fisiologia , Dor Visceral/metabolismo
5.
J Neurosci ; 42(5): 789-803, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34880121

RESUMO

Omnipause neurons (OPNs) in the nucleus raphe interpositus have tonic activity while the eyes are stationary ("fixation") but stop firing immediately before and during saccades. To locate the source of suppression, we analyzed synaptic inputs from the rostral and caudal superior colliculi (SCs) to OPNs by using intracellular recording and staining, and investigated pathways transmitting the inputs in anesthetized cats of both sexes. Electrophysiologically or morphologically identified OPNs received monosynaptic excitation from the rostral SCs with contralateral dominance, and received disynaptic inhibition from the caudal SCs with ipsilateral dominance. Cutting the tectoreticular tract transversely between the contralateral OPN and inhibitory burst neuron (IBN) regions eliminated inhibition from the caudal SCs, but not excitation from the rostral SCs in OPNs. In contrast, a midline section between IBN regions eliminated disynaptic inhibition in OPNs from the caudal SCs but did not affect the monosynaptic excitation from the rostral SCs. Stimulation of the contralateral IBN region evoked monosynaptic inhibition in OPNs, which was facilitated by preconditioning SC stimulation. Three-dimensional reconstruction of HRP-stained cells revealed that individual OPNs have axons that terminate in the opposite IBN area, while individual IBNs have axon collaterals to the opposite OPN area. These results show that there are differences in the neural circuit from the rostral and caudal SCs to the brainstem premotor circuitry and that IBNs suppress OPNs immediately before and during saccades. Thus, the IBNs, which are activated by caudal SC saccade neurons, shut down OPN firing and help to trigger saccades and suppress ("latch") OPN activity during saccades.SIGNIFICANCE STATEMENT Saccades are the fastest eye movements to redirect gaze to an object of interest and bring its image on the fovea for fixation. Burst neurons (BNs) and omnipause neurons (OPNs) which behave reciprocally in the brainstem, are important for saccade generation and fixation. This study investigated unsolved important questions about where these neurons receive command signals and how they interact for initiating saccades from visual fixation. The results show that the rostral superior colliculi (SCs) excite OPNs monosynaptically for fixation, whereas the caudal SCs monosynaptically excite inhibitory BNs, which then directly inhibit OPNs for the initiation of saccades. This inhibition from the caudal SCs may account for the omnipause behavior of OPNs for initiation and maintenance of saccades in all directions.


Assuntos
Tronco Encefálico/fisiologia , Fixação Ocular/fisiologia , Rede Nervosa/fisiologia , Movimentos Sacádicos/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Gatos , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Microeletrodos , Colículos Superiores/fisiologia
6.
Neurobiol Aging ; 110: 13-26, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844076

RESUMO

At the neuromuscular junction (NMJ), changes to the size of the postsynaptic potential induce homeostatic compensation. At the Drosophila NMJ, increased glutamate release causes a compensatory decrease in quantal content, but it is unknown if this mechanism operates at the cholinergic mammalian NMJ. We addressed this question by recording endplate potentials (EPP) and muscle contraction in 3-month and 24-month ChAT-ChR2-EYFP mice that overexpress vesicular acetylcholine transporter and release more acetylcholine per vesicle. At 3 months, the quantal content of EPPs from ChAT-ChR2-EYFP mice were not different from WT controls, however tetanic depression was greater, and quantal size during high-frequency stimulation and the size of the readily releasable pool (RRP) were decreased. At 24 months of age, quantal content was reduced in ChAT-ChR2-EYFP mice, which normalized synaptic depression despite smaller RRP. The effect of pancuronium on indirect evoked muscle twitch was not different between groups. These results indicate that an increase in the amount of acetylcholine per vesicle induces two distinct age-dependent homeostatic mechanisms compensating excessive acetylcholine release.


Assuntos
Acetilcolina/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Homeostase/fisiologia , Junção Neuromuscular/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Camundongos , Contração Muscular/fisiologia , Potenciais Sinápticos/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
7.
Sci Rep ; 11(1): 17285, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446751

RESUMO

Lithium chloride has been widely used as a therapeutic mood stabilizer. Although cumulative evidence suggests that lithium plays modulatory effects on postsynaptic receptors, the underlying mechanism by which lithium regulates synaptic transmission has not been fully elucidated. In this work, by using the advantageous neuromuscular synapse, we evaluated the effect of lithium on the stability of postsynaptic nicotinic acetylcholine receptors (nAChRs) in vivo. We found that in normally innervated neuromuscular synapses, lithium chloride significantly decreased the turnover of nAChRs by reducing their internalization. A similar response was observed in CHO-K1/A5 cells expressing the adult muscle-type nAChRs. Strikingly, in denervated neuromuscular synapses, lithium led to enhanced nAChR turnover and density by increasing the incorporation of new nAChRs. Lithium also potentiated the formation of unstable nAChR clusters in non-synaptic regions of denervated muscle fibres. We found that denervation-dependent re-expression of the foetal nAChR γ-subunit was not altered by lithium. However, while denervation inhibits the distribution of ß-catenin within endplates, lithium-treated fibres retain ß-catenin staining in specific foci of the synaptic region. Collectively, our data reveal that lithium treatment differentially affects the stability of postsynaptic receptors in normal and denervated neuromuscular synapses in vivo, thus providing novel insights into the regulatory effects of lithium on synaptic organization and extending its potential therapeutic use in conditions affecting the peripheral nervous system.


Assuntos
Cloreto de Lítio/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Denervação/métodos , Camundongos , Microscopia de Fluorescência/métodos , Junção Neuromuscular/fisiologia , Junção Neuromuscular/cirurgia , Transporte Proteico/efeitos dos fármacos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia
8.
Sci Rep ; 11(1): 14733, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282275

RESUMO

We developed a method to non-invasively detect synaptic relationships among neurons from in vitro networks. Our method uses microelectrode arrays on which neurons are cultured and from which propagation of extracellular action potentials (eAPs) in single axons are recorded at multiple electrodes. Detecting eAP propagation bypasses ambiguity introduced by spike sorting. Our methods identify short latency spiking relationships between neurons with properties expected of synaptically coupled neurons, namely they were recapitulated by direct stimulation and were sensitive to changing the number of active synaptic sites. Our methods enabled us to assemble a functional subset of neuronal connectivity in our cultures.


Assuntos
Potenciais de Ação/fisiologia , Eletrofisiologia/métodos , Neurônios/fisiologia , Algoritmos , Animais , Animais Recém-Nascidos , Células Cultivadas , Espaço Extracelular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Neurônios/citologia , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia
9.
Elife ; 102021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34308838

RESUMO

Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of metabotropic GABAB responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABAB receptors are simultaneously active.


Assuntos
Interneurônios/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Potenciais Sinápticos/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Córtex Cerebral/metabolismo , Camundongos , Inibição Neural , Células Piramidais/fisiologia , Ratos , Receptores de GABA-B/metabolismo , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
10.
Nat Commun ; 12(1): 2912, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006874

RESUMO

The hippocampal mossy fiber synapse is a key synapse of the trisynaptic circuit. Post-tetanic potentiation (PTP) is the most powerful form of plasticity at this synaptic connection. It is widely believed that mossy fiber PTP is an entirely presynaptic phenomenon, implying that PTP induction is input-specific, and requires neither activity of multiple inputs nor stimulation of postsynaptic neurons. To directly test cooperativity and associativity, we made paired recordings between single mossy fiber terminals and postsynaptic CA3 pyramidal neurons in rat brain slices. By stimulating non-overlapping mossy fiber inputs converging onto single CA3 neurons, we confirm that PTP is input-specific and non-cooperative. Unexpectedly, mossy fiber PTP exhibits anti-associative induction properties. EPSCs show only minimal PTP after combined pre- and postsynaptic high-frequency stimulation with intact postsynaptic Ca2+ signaling, but marked PTP in the absence of postsynaptic spiking and after suppression of postsynaptic Ca2+ signaling (10 mM EGTA). PTP is largely recovered by inhibitors of voltage-gated R- and L-type Ca2+ channels, group II mGluRs, and vacuolar-type H+-ATPase, suggesting the involvement of retrograde vesicular glutamate signaling. Transsynaptic regulation of PTP extends the repertoire of synaptic computations, implementing a brake on mossy fiber detonation and a "smart teacher" function of hippocampal mossy fiber synapses.


Assuntos
Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Estimulação Elétrica , Potenciais Evocados/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Técnicas de Patch-Clamp , Ratos , Potenciais Sinápticos/fisiologia
11.
Cell Rep ; 35(3): 109021, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882307

RESUMO

Sharp wave-ripples (SWRs) represent synchronous discharges of hippocampal neurons and are believed to play a major role in memory consolidation. A large body of evidence suggests that SWRs are exclusively generated in the CA3-CA2 network. In contrast, here, we provide several lines of evidence showing that the subiculum can function as a secondary SWRs generator. SWRs with subicular origin propagate forward into the entorhinal cortex as well as backward into the hippocampus proper. Our findings suggest that the output structures of the hippocampus are not only passively facilitating the transfer of SWRs to the cortex, but they also can actively contribute to the genesis of SWRs. We hypothesize that SWRs with a subicular origin may be important for the consolidation of information conveyed to the hippocampus via the temporoammonic pathway.


Assuntos
Ondas Encefálicas/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Córtex Entorrinal/fisiologia , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/anatomia & histologia , Região CA3 Hipocampal/anatomia & histologia , Eletrodos Implantados , Córtex Entorrinal/anatomia & histologia , Masculino , Consolidação da Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microtomia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans
12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850017

RESUMO

Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Animais , Astrócitos/fisiologia , Transporte Biológico/fisiologia , Epilepsia/fisiopatologia , Epilepsia/prevenção & controle , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Convulsões/metabolismo , Transdução de Sinais , Potenciais Sinápticos/fisiologia
13.
Nat Commun ; 12(1): 2112, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837214

RESUMO

GABAA receptors (GABAARs) are pentameric ligand-gated ion channels distributed throughout the brain where they mediate synaptic and tonic inhibition. Following activation, these receptors undergo desensitization which involves entry into long-lived agonist-bound closed states. Although the kinetic effects of this state are recognised and its structural basis has been uncovered, the physiological impact of desensitization on inhibitory neurotransmission remains unknown. Here we describe an enduring form of long-term potentiation at inhibitory synapses that elevates synaptic current amplitude for 24 h following desensitization of GABAARs in response to agonist exposure or allosteric modulation. Using receptor mutants and allosteric modulators we demonstrate that desensitization of GABAARs facilitates their phosphorylation by PKC, which increases the number of receptors at inhibitory synapses. These observations provide a physiological relevance to the desensitized state of GABAARs, acting as a signal to regulate the efficacy of inhibitory synapses during prolonged periods of inhibitory neurotransmission.


Assuntos
Potenciação de Longa Duração/fisiologia , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Potenciais Sinápticos/fisiologia , Regulação Alostérica , Animais , Células Cultivadas , Agonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Hipocampo/citologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Cultura Primária de Células , Proteína Quinase C/metabolismo , Ratos , Receptores de GABA-A/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
15.
Neuroendocrinology ; 111(12): 1219-1230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361699

RESUMO

INTRODUCTION: Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS: To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS: Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION: These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.


Assuntos
Endocanabinoides/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Neurônios/fisiologia , Puberdade/metabolismo , Transdução de Sinais/fisiologia , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Fator de Crescimento Insulin-Like I/administração & dosagem , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos
16.
Curr Biol ; 31(1): 1-12.e5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065012

RESUMO

The visual perception of identity in humans and other primates is thought to draw upon cortical areas specialized for the analysis of facial structure. A prominent theory of face recognition holds that the brain computes and stores average facial structure, which it then uses to efficiently determine individual identity, though the neural mechanisms underlying this process are controversial. Here, we demonstrate that the dynamic suppression of average facial structure plays a prominent role in the responses of neurons in three fMRI-defined face patches of the macaque. Using photorealistic face stimuli that systematically varied in identity level according to a psychophysically based face space, we found that single units in the AF, AM, and ML face patches exhibited robust tuning around average facial structure. This tuning emerged after the initial excitatory response to the face and was expressed as the selective suppression of sustained responses to low-identity faces. The coincidence of this suppression with increased spike timing synchrony across the population suggests a mechanism of active inhibition underlying this effect. Control experiments confirmed that the diminished responses to low-identity faces were not due to short-term adaptation processes. We propose that the brain's neural suppression of average facial structure facilitates recognition by promoting the extraction of distinctive facial characteristics and suppressing redundant or irrelevant responses across the population.


Assuntos
Face/anatomia & histologia , Reconhecimento Facial/fisiologia , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Eletrodos Implantados , Feminino , Macaca mulatta/anatomia & histologia , Imageamento por Ressonância Magnética , Masculino , Neurônios/fisiologia , Estimulação Luminosa/métodos , Potenciais Sinápticos/fisiologia , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagem
17.
Proc Natl Acad Sci U S A ; 117(47): 29937-29947, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168717

RESUMO

Analysis of the presynaptic action potential's (APsyn) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca2+ in cultured hippocampal neurons. These recordings revealed a critical and selective role for Kv1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic Kv1 channel inactivation was mediated by the Kvß1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of Kvß1 blocked all broadening of the APsyn during high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic Kv channels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.


Assuntos
Hipocampo/metabolismo , Canal de Potássio Kv1.3/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Células Piramidais/metabolismo , Potenciais Sinápticos/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Venenos Elapídicos/farmacologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Microscopia Intravital , Canal de Potássio Kv1.3/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Imagem Óptica , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Cultura Primária de Células , Células Piramidais/efeitos dos fármacos , Ratos , Potenciais Sinápticos/efeitos dos fármacos
18.
Sci Rep ; 10(1): 16899, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037263

RESUMO

Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.


Assuntos
Glicina/metabolismo , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Animais , Vias Auditivas/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Neurônios/metabolismo , Núcleo Olivar/metabolismo , Técnicas de Patch-Clamp/métodos , Receptores de Glicina/metabolismo , Localização de Som/fisiologia , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
19.
J Neurosci ; 40(42): 8025-8041, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928887

RESUMO

Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This "presynaptic downscaling" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.


Assuntos
Drosophila/fisiologia , Ácido Glutâmico/fisiologia , Neurotransmissores/metabolismo , Animais , Potenciais Evocados/fisiologia , Homeostase , Imuno-Histoquímica , Locomoção/fisiologia , Neurônios Motores/fisiologia , Músculos/inervação , Músculos/fisiologia , Junção Neuromuscular/fisiologia , Técnicas de Patch-Clamp , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
20.
J Neurophysiol ; 124(3): 750-762, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32727254

RESUMO

We recorded membrane potentialp changes in 45 pharyngeal motoneurons (PMs) including 33 expiratory modulated and 12 nonrespiratory neurons during breathing, swallowing, and coughing in decerebrate paralyzed cats. Four types of membrane potential changes were observed during swallowing: 1) depolarization during swallowing (n = 27), 2) depolarization preceded by a brief (≤ 0.1 s) hyperpolarization (n = 4), 3) longer term (> 0.3 s) hyperpolarization followed by depolarization (n = 11), and 4) hyperpolarization during the latter period of swallowing (n = 3). During coughing, PMs showed two types of membrane potential changes (n = 10). Nine neurons exhibited a ramp-like depolarization during the expiratory phase of coughing with the potential peak at the end of expiratory phase. This depolarization was interrupted by a transient repolarization just before the potential peak. The membrane potential of the remaining neuron abruptly depolarized at the onset of the expiratory phase and then gradually decreased even after the end of the expiratory phase. Single-shock stimulation of the superior laryngeal nerve (SLN) induced inhibitory postsynaptic potentials in 19 of 21 PMs. Two motoneurons exhibited an SLN-induced excitatory postsynaptic potential. The present study revealed that PMs receive the central drive, consisting of a combination of excitation and inhibition, from the pattern generator circuitry of breathing, swallowing, and coughing, which changes the properties of their membrane potential to generate these motor behaviors of the pharynx. Our data will provide the basis of studies of pharyngeal activity and its control from the medullary neuronal circuitry responsible for the upper airway motor activity.NEW & NOTEWORTHY We have provided the first demonstration of the multifunctional activity of the pharyngeal motoneurons at the level of membrane potential during respiration, swallowing, and coughing.


Assuntos
Geradores de Padrão Central/fisiologia , Tosse/fisiopatologia , Deglutição/fisiologia , Nervos Laríngeos/fisiologia , Neurônios Motores/fisiologia , Faringe/inervação , Respiração , Potenciais Sinápticos/fisiologia , Animais , Gatos , Estado de Descerebração , Estimulação Elétrica , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...